
From fault injection to RCE

Analyzing a Bluetooth tracker

Me?
● Security researcher, Switzerland
● Mostly interested in embedded devices

● BlackAlps organization team
● Hydrabus core developper

The target
● Chipolo ONE

– Released in 2019

● Bluetooth tracker
– Helps recover your keys,

cat, ...

Disclosure

AKA starting from the end

Initial contact
● Sept. 15: Sent an email to Chipolo
● Sept. 20: ACK from Chipolo, asking for more

details
● Oct. 15: Online meeting with Chipolo team

– Presentation similar to this talk

– They were very open to discuss their internal
process and answer questions. Kudos !

Meeting outcome
● Available memory space was a huge limiting

factor
– Prevented some memory checks
– … but they acknowledged some mistakes

● No problems to publish this talk
– Just asked not to publish encryption keys

Device analysis

AKA Back to the beginning

Internals
● MCU: DA14580
● Piezo sound driver

PAM8904E
● CR2032 battery
● Test points

DA14580
● Produced by Dialog (now Renesas)
● Cortex-M0
● No flash, only OTP
● Datasheet available

Locating debug interface
● Pinout in the

datasheet
● Easy to find testpoints

on the PCB

SWD lock
● SWD interface is

unresponsive :(
● MCU supports a “JTAG

lock” feature
– Applied early in the boot

process

Fault injection

Fault injection?
● Perturbate the CPU operating environment to

induce calculation errors (faults)
– ie. “skip instructions”

● Perturbation must be very small to allow the
target to resume normal operation after the fault

Fault injection techniques
● Multiple techniques

– Voltage glitching
– Electromagnetic Fault Injection
– ...

● Went for EMFI

Where to fault?
● Boot process is documented
● OTP is copied into RAM

during the boot process
● RAM is remapped

at @0x00000000
● CPU is reset so code starts

from RAM

Using power analysis
● Power analysis provides a good way to “see”

the CPU activity
● Can detect different patterns depending on the

CPU activity
● Try to look for varying patterns during the copy

to SRAM

Boot process analysis

Fault characterization
● With any fault injection method, parameters are

important
– Glitching too hard, target resets
– Glitching too softly has no effect

● Usually, write a custom firmware to test fault
effects
– Wanted to do it blind, using power analysis

But...

● During the pulse characterization, SWD
interface “accidentally” appeared

● Proceeded to dump from 0x00000000
● Chip died after subsequent fault attempts :(

RAM dump
● Obtained ~44KB of data

– Matches the RAM size in datasheet

● Dumped data shows readable strings

Firmware analysis

Firmware analysis 101
● Load firmware at the correct address

– Easy here, dumped code from address 0x00000000

● Populate known peripherals and registers
● Analyze code

Peripherals and registers
● For ARM chips: CMSIS-SVD

– XML files describing peripherals and registers
– Published by manufacturers

● Easily loaded using SVDLoader script
● Except no SVD for DA14580 could be found

online :(

No SVD? No problem
● Datasheet contains all information
● Just parse the PDF and generate a Ghidra

script to mimic the SVDloader features

createMemoryBlock("APB/I2C",
af.getAddress("0x50001300"), None, 256,
False)

createLabel(af.getAddress("0x40000000"
), "BLE_RWBTLECNTL_REG", False)
setEOLComment(af.getAddress("0x4000
0000"), "BLE Control register")

No SVD? Some problems
● Using pyPDFParser library
● Even if PDF looks fine, tables are all messed

up
– Merged cells, ghost cells, …

● In the end, managed corner cases by hand

Result

ROM functions
● Code contains calls to different memory region
● Hardcoded functions for basic tasks and BLE

management
– Stored in ROM

● Found a symdef file on Github
● Wrote a Ghidra script to

import those files
https://github.com/Baldanos/ghidra-symdefs-import

Putting it all together

Firmware analysis

Reversing
● Found the main app logic

– Huge state machine

● Most of the features depend on some kind
of authentication

Reversing auth logic
● Comparison between a

user-supplied 6 byte
value and a computed
one

● Computed value uses
the CRC32 of some
other 16 byte buffer
– Hint: Google for

constants (or use
FindCrypt)

Reversing more auth logic
● 16 byte buffer is the

result of applying TEA
algorithm on
– BT address + fixed

value (undisclosed)
– Key is also a fixed

value (undisclosed)

There’s more !
● Once the CRC “secret” value is computed, it is

mangled with a random 4-byte value
– Generated at boot
– Can be queried over BLE

XOR math
● With known RAND

and TOKEN, can
recover CRC

● TOKEN can be retrieved
using the app once

● Fun fact: RAND is incremented by 1 after
successful authentication

TOKEN Formula

[0] RAND[0] ^ CRC[0]

[1] RAND[1] ^ CRC[0] ^ CRC[3]

[2] RAND[1] ^ RAND[2] ^ CRC[1]

[3] RAND[3] ^ CRC[1]

[4] CRC[3] ^ CRC[2]

[5] CRC[3] ^ RAND[2]

Hunting for bugs

App protocol
● Installed app to confirm auth bypass using BT

snoop log
● Protocol uses some kind of TLV encoding

– [tag:uint8][length:uint8][value]

TLV parsing
● TLV is split in three stack-based buffers
● No bounds check
● Easy win?

BLE GATT issues
● Unfortunately, DA14580 BLE stack does not

support changing MTU
– Stuck to default maximum of 23 bytes
– Too small to control overflowed data

● Have to dig deeper

A sound of hope?
● App allows to upload custom

melodies
– 9 melodies can be defined

● Array of melody structures in
memory

● Fun fact, two of them have a
NULL pointer
– Allows to overwrite vector

table

Melody data handling
● Once a melody has to be

updated, app will send
melody data to the
device in chunks

● Absolutely no bounds
checking when storing
the data

● Fun fact: there is a
checksum at the end of
the melody, but it can be
skipped

What to overwrite?
● Inspect RAM after the last melody structure
● Litteraly the first used value is a function pointer

– Callback function. Called after every received BLE
command

Exploitation strategy
● Authenticate to the device
● Start updating melody 5

– Furthest down in memory

● Send nopsled + code to fill memory up to
callback pointer

● Overwrite pointer with buffer location
● Profit !

Hello world
● Simple payload
● Sends Hello world notification

Demo !

Better?
● Firmware dump code
● Will dump 16 bytes of firmware

via notification
– Auto increment data pointer

Conclusions
● Attackers only need to be lucky once they say
● Devices cannot be updated

– Still available for purchasing if you want to try for
yourself

● Got new targets from Chipolo to play with ;)

Thank you !

Questions ?

@Baldanos
balda@balda.ch

Bonus

JTAG lock feature in ROM
● Dumped the ROM

using BLE exploit
● Located the lock

feature
● Can re-enable debug

using RCE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

