
From fault injection to RCE

Analyzing a Bluetooth tracker



Me?
● Security researcher, Switzerland
● Mostly interested in embedded devices

● BlackAlps organization team
● Hydrabus core developper



The target
● Chipolo ONE

– Released in 2019

● Bluetooth tracker
– Helps recover your keys, 

cat, ...



Disclosure

AKA starting from the end



Initial contact
● Sept. 15: Sent an email to Chipolo
● Sept. 20: ACK from Chipolo, asking for more 

details
● Oct. 15: Online meeting with Chipolo team

– Presentation similar  to this talk

– They were very open to discuss their internal 
process and answer questions. Kudos !



Meeting outcome
● Available memory space was a huge limiting 

factor
– Prevented some memory checks
– … but they acknowledged some mistakes

● No problems to publish this talk
– Just asked not to publish encryption keys



Device analysis

AKA Back to the beginning



Internals
● MCU: DA14580
● Piezo sound driver 

PAM8904E
● CR2032 battery
● Test points



DA14580
● Produced by Dialog (now Renesas)
● Cortex-M0
● No flash, only OTP
● Datasheet available



Locating debug interface
● Pinout in the 

datasheet
● Easy to find testpoints 

on the PCB



SWD lock
● SWD interface is 

unresponsive :(
● MCU supports a “JTAG 

lock” feature
– Applied early in the boot 

process



Fault injection



Fault injection?
● Perturbate the CPU operating environment to 

induce calculation errors (faults)
– ie. “skip instructions”

● Perturbation must be very small to allow the 
target to resume normal operation after the fault



Fault injection techniques
● Multiple techniques

– Voltage glitching
– Electromagnetic Fault Injection
– ...

● Went for EMFI



Where to fault?
● Boot process is documented 
● OTP is copied into RAM 

during the boot process
● RAM is remapped 

at @0x00000000
● CPU is reset so code starts 

from RAM



Using power analysis
● Power analysis provides a good way to “see” 

the CPU activity
● Can detect different patterns depending on the 

CPU activity
● Try to look for varying patterns during the copy 

to SRAM



Boot process analysis



Fault characterization
● With any fault injection method, parameters are 

important
– Glitching too hard, target resets
– Glitching too softly has no effect

● Usually, write a custom firmware to test fault 
effects
– Wanted to do it blind, using power analysis



But...

● During the pulse characterization, SWD 
interface “accidentally” appeared

● Proceeded to dump from 0x00000000
● Chip died after subsequent fault attempts :(



RAM dump
● Obtained ~44KB of data

– Matches the RAM size in datasheet

● Dumped data shows readable strings





Firmware analysis



Firmware analysis 101
● Load firmware at the correct address

– Easy here, dumped code from address 0x00000000

● Populate known peripherals and registers
● Analyze code



Peripherals and registers
● For ARM chips: CMSIS-SVD

– XML files describing peripherals and registers
– Published by manufacturers

● Easily loaded using SVDLoader script
● Except no SVD for DA14580 could be found 

online :(



No SVD? No problem
● Datasheet contains all information
● Just parse the PDF and generate a Ghidra 

script to mimic the SVDloader features

createMemoryBlock("APB/I2C", 
af.getAddress("0x50001300"), None, 256, 
False)

createLabel(af.getAddress("0x40000000"
), "BLE_RWBTLECNTL_REG", False)
setEOLComment(af.getAddress("0x4000
0000"), "BLE Control register")



No SVD? Some problems
● Using pyPDFParser library
● Even if PDF looks fine, tables are all  messed 

up
– Merged cells, ghost cells, …

● In the end, managed corner cases by hand



Result



ROM functions
● Code contains calls to different memory region
● Hardcoded functions for basic tasks and BLE 

management
– Stored in ROM

● Found a symdef file on Github
● Wrote a Ghidra script to

import those files
https://github.com/Baldanos/ghidra-symdefs-import



Putting it all together



Firmware analysis



Reversing
● Found the main app logic

– Huge state machine

● Most of the features depend on some kind 
of authentication



Reversing auth logic
● Comparison between a 

user-supplied 6 byte 
value and a computed 
one

● Computed value uses 
the CRC32 of some 
other 16 byte buffer
– Hint: Google for 

constants (or use 
FindCrypt)



Reversing more auth logic
● 16 byte buffer is the 

result of applying TEA 
algorithm on
– BT address + fixed 

value (undisclosed)
– Key is also a fixed 

value (undisclosed)



There’s more !
● Once the CRC “secret” value is computed, it is 

mangled with a random 4-byte value
– Generated at boot
– Can be queried over BLE



XOR math
● With known RAND

and TOKEN, can
recover CRC

● TOKEN can be retrieved 
using the app once

● Fun fact: RAND is incremented by 1 after 
successful authentication

TOKEN Formula

[0] RAND[0] ^ CRC[0]

[1] RAND[1] ^ CRC[0] ^ CRC[3] 

[2] RAND[1] ^ RAND[2] ^ CRC[1]

[3] RAND[3] ^ CRC[1]

[4] CRC[3] ^ CRC[2]

[5] CRC[3] ^ RAND[2]



Hunting for bugs



App protocol
● Installed app to confirm auth bypass using BT 

snoop log
● Protocol uses some kind of TLV encoding

– [tag:uint8][length:uint8][value]



TLV parsing
● TLV is split in three stack-based buffers
● No bounds check 
● Easy win?



BLE GATT issues
● Unfortunately, DA14580 BLE stack does not 

support changing MTU
– Stuck to default maximum of 23 bytes
– Too small to control overflowed data

● Have to dig deeper



A sound of hope?
● App allows to upload custom 

melodies
– 9 melodies can be defined

● Array of melody structures in 
memory

● Fun fact, two of them have a 
NULL pointer
– Allows to overwrite vector 

table



Melody data handling
● Once a melody has to be 

updated, app will send 
melody data to the 
device in chunks

● Absolutely no bounds 
checking when storing 
the data

● Fun fact: there is a 
checksum at the end of 
the melody, but it can be 
skipped



What to overwrite?
● Inspect RAM after the last melody structure
● Litteraly the first used value is a function pointer

– Callback function. Called after every  received BLE 
command



Exploitation strategy
● Authenticate to the device
● Start updating melody 5

– Furthest down in memory

● Send nopsled + code to fill memory up to 
callback pointer

● Overwrite pointer with buffer location
● Profit !



Hello world
● Simple payload
● Sends Hello world notification



Demo !



Better?
● Firmware dump code
● Will dump 16 bytes of firmware 

via notification
– Auto increment data pointer



Conclusions
● Attackers only need to be lucky once they say
● Devices cannot be updated

– Still available for purchasing if you want to try for 
yourself

● Got new targets from Chipolo to play with ;)



Thank you !

Questions ?

@Baldanos
balda@balda.ch



Bonus



JTAG lock feature in ROM
● Dumped the ROM 

using BLE exploit
● Located the lock 

feature
● Can re-enable debug 

using RCE
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